Entradas

Mostrando las entradas de noviembre, 2014

El concepto de variedad diferenciable (parte II)

(Esta entrada es la continuación del tema sobre la noción de variedad diferenciable)


Recordemos que una variedad diferenciable es el objeto obtenido al añadir dos estructuras a un conjunto, una topológica y una diferencial, con ciertas condiciones técnicas que comentaremos a continuación.

Decimos que un espacio topológico $M$ es una $n$-variedad topológica si es un espacio Hausdorff, segundo numerable y localmente Euclidiano de dimensión $n$. Es decir, para cada punto $x\in M$ existe una vecindad $U$ y un homeomorfismo $\varphi: U\rightarrow O$, con $O$ abierto de $\mathbb{R}^n$. Una pareja $(U,\varphi)$ es llamada una carta coordenada para $M$ si $U$ es un subespacio abierto de $M$ y $\varphi$ es un homeomorfismo de $U$ a un abierto de $\mathbb{R}^n$.
Primero recordemos que un espacio Hausdorff $M$ es aquel en el que para cada par de puntos distintos $x,y\in M$ existen subconjuntos abiertos ajenos $U,V$ tales que $p\in U$ y $q\in V$. La condición de ser Hausdorff suele imponerse en much…