Entradas

Mostrando las entradas de 2015

El Problema de Nielsen (parte II)

Imagen
Recordemos que el Problema de Nielsen consiste en determinar qué subgrupos del grupo modular $\Gamma (S_g)$ pueden ser representados en $Top(S_g)$. Por ejemplo, dado $H\subset \Gamma (S_g)$ con $H=<h>$ cíclico infinito, ¿es cierto que $h$ es de orden infinito?



Hagamos $g=0$ y consideremos el grupo modular $\Gamma(S^2)$. En 1926 H. Kneser publica el resultado que afirma que todo homeomorfismo de $S^2$ que preserva orientación es isotópico a una rotación; el análogo diferenciable se debe a S. Smale. En el caso de considerar el grupo modular $\Gamma^{\pm}(S^2)$ de todos los homeomorfismos (los que preservan orientación y los que no) se tiene que $\Gamma^{\pm}(S^2)$ es isomorfo a $\mathbb{Z}_2=\{1,a\}$, donde $1$ es la identidad y $a$ es la función antipodal $x\mapsto -x$. Así, todo el grupo $\Gamma^{\pm}(S^2)$ queda representado por las funciones identidad y antipodal.






Tomemos el caso $g=1$. Recordemos el isomorfismo $\Gamma(S_g)\cong Out \pi_1(S_g,p)$ y notemos que como $\pi_1(T^2…

Water Knots

Imagen

Frenet-Serret frame

Imagen
Jean Frédéric Frenet (1816-1900) y Joseph Alfred Serret (1819-1885) desarrollaron de manera independiente un conjunto de fórmulas para describir propiedades cinemáticas de una partícula que se mueve sobre una curva continua y diferenciable en tres dimensiones. Actualmente, estas fórmulas se conocen como Fórmulas de  Frenet-Serret: \[\frac{d\mathbf T}{ds}=k\mathbf N,\quad\frac{d\mathbf N}{ds}=-k\mathbf T+\tau\mathbf B\quad\text{y}\quad\frac{d\mathbf B}{ds}=\tau\mathbf N.\] donde $d/ds$ es la derivada con respecto a la longitud de arco, $k$ es la curvatura y $\tau$ es la torsión. Estas fórmulas describen una conexión entre las derivadas de los vectores unitarios tangente T, normal N y binormal B; entre ellos mismos. En conjunto, a los tres vectores mencionados se les conoce como Frenet-Serret frame (que se podría traducir como: 'marco de Frenet-Serret').

La siguiente animación muestra el Frenet-Serret frame, el cual consiste de tres vectores. El vector azul representa al vector…

Transformaciones de Möbius

Imagen
Las transformaciones de Möbius son funciones racionales complejas de la forma $$f(z)=\frac{az+b}{cz+d}$$ donde $a,b,c$ y $d$ son constantes complejas tales que $ad-bc\neq 0$.
Las transformaciones de Möbius reciben su nombre en honor a August Ferdinand Möbius (1790-1868), aunque también se nombran como transformaciones especiales conformes, transformaciones racionales lineales o transformaciones homográficas.

Las propiedades matemáticas de las transformaciones de Möbius se estudian en los cursos de variable compleja. Por ejemplo, se sabe que dichas transformaciones son funciones meromórficas (de hecho el grupo de automorfismos meromóficos del plano extendido $\mathbb C_{\infty}$ consiste precisamente de transformaciones de Möbius) y además son funciones conformes en todas partes. También estas transformaciones poseen la siguiente propiedad geométrica:
Los arcos de circunferencias son transformados (o mapeados) en arcos de circunferencias.
La caracterización de las transformaciones de M…

¿Para qué ya NO sirven los logaritmos?

Imagen
1. Los logaritmos en el contexto escolar
Los logaritmos se estudian, generalmente, en los primeros cursos de matemáticas a nivel Universitario. Claro que en las carreras de matemáticas, o ciencias duras, se estudian con más profundidad debido a sus múltiples aplicaciones. En los cursos (y en los libros también) se explica que el logaritmo es el exponente al que hay que elevar un número, llamado base, para obtener otro número determinado. O si se prefiere, más formalmente: